Sparse LMS/F algorithms with application to adaptive system identification

نویسندگان

  • Guan Gui
  • Abolfazl Mehbodniya
  • Fumiyuki Adachi
چکیده

Standard least mean square/fourth (LMS/F) is a classical adaptive algorithm that combined the advantages of both least mean square (LMS) and least mean fourth (LMF). The advantage of LMS is fast convergence speed while its shortcoming is suboptimal solution in low signal-to-noise ratio (SNR) environment. On the contrary, the advantage of LMF algorithm is robust in low SNR while its drawback is slow convergence speed in high SNR case. Many finite impulse response systems are modeled as sparse rather than traditionally dense. To take advantage of system sparsity, different sparse LMS algorithms with lp-LMS and l0-LMS have been proposed to improve adaptive identification performance. However, sparse LMS algorithms have the same drawback as standard LMS. Different from LMS filter, standard LMS/F filter can achieve better performance. Hence, the aim of this paper is to introduce sparse penalties to the LMS/F algorithm so that it can further improve identification performance. We propose two sparse LMS/F algorithms using two sparse constraints to improve adaptive identification performance. Two experiments are performed to show the effectiveness of the proposed algorithms by computer simulation. In the first experiment, the number of nonzero coefficients is changing, and the proposed algorithms can achieve better mean square deviation performance than sparse LMS algorithms. In the second experiment, the number of nonzero coefficient is fixed, and mean square deviation performance of sparse LMS/F algorithms is still better than that of sparse LMS algorithms. Copyright © 2013 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification

The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The propose...

متن کامل

Gradient Compared Lp-LMS Algorithms for Sparse System Identification

In this paper, we propose two novel p-norm penalty least mean square (lp-LMS) algorithms as supplements of the conventional lp-LMS algorithm established for sparse adaptive filtering recently. A gradient comparator is employed to selectively apply the zero attractor of p-norm constraint for only those taps that have the same polarity as that of the gradient of the squared instantaneous error, w...

متن کامل

A Family of Selective Partial Update Affine Projection Adaptive Filtering Algorithms

In this paper we present a general formalism for the establishment of the family of selective partial update affine projection algorithms (SPU-APA). The SPU-APA, the SPU regularized APA (SPU-R-APA), the SPU partial rank algorithm (SPU-PRA), the SPU binormalized data reusing least mean squares (SPU-BNDR-LMS), and the SPU normalized LMS with orthogonal correction factors (SPU-NLMS-OCF) algorithms...

متن کامل

Least Mean Square/Fourth Algorithm with Application to Sparse Channel Estimation

Broadband signal transmission over frequencyselective fading channel often requires accurate channel state information at receiver. One of the most attracting adaptive channel estimation methods is least mean square (LMS) algorithm. However, LMS-based method is often degraded by random scaling of input training signal. To improve the estimation performance, in this paper we apply the standard l...

متن کامل

Error Gradient-based Variable-Lp Norm Constraint LMS Algorithm for Sparse System Identification

Sparse adaptive filtering has gained much attention due to its wide applicability in the field of signal processing. Among the main algorithm families, sparse norm constraint adaptive filters develop rapidly in recent years. However, when applied for system identification, most priori work in sparse norm constraint adaptive filtering suffers from the difficulty of adaptability to the sparsity o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Wireless Communications and Mobile Computing

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015